Optimization of the Impact of Hitempase 2XL, Bioglucanase TX and Brewers Protease on the Turbidity of Madjeru sorghum cultivar wort.

Abstract:— The action of three technical mashing enzymes (Hitempase 2XL, Bioglucanase TX and Brewers Protease) on the turbidity of the worts of unmalted and malted Madjeru sorghum mash was modeled and analyzed using response surface methodology. The analysis showed that both Hitempase 2XL and Bioglucanase TX had significant impact on unmalted Madjeru worts turbidity during mashing of unmalted Madjeru sorghum grist, with a contribution of 15% and 11% respectively. Bioglucanase TX and Brewers Protease had significant impact on malted Madjeru worts turbidity, they contributed respectively for 7% and 13%. The interaction X_1X_2 also had a significant impact on wort turbidity of unmalted Madjeru for which it contributed 23%. The interaction X_1X_3 had a significant impact on wort turbidity of malted Madjeru for which it contributed 24%. Optimization of the concerted actions of the three enzymes for turbidity of unmalted Madjeru gave a combination of (0 U; 298.25 BGU and 0 mg) for Hitempase 2XL, Bioglucanase TX and Brewers Protease respectively. This gave a minimal turbidity of 0.00 NTU. This combination was: 1387.50 U; 0 BGU and 32.23 mg for malted Madjeru, giving a minimal turbidity of 5.27 NTU.

Keywords: enzymes, turbidity, response surface methodology, optimization, Madjeru

I. INTRODUCTION

Sorghum malt has a lower hydrolytic enzyme and principal extract potential than the conventional barley malt [1]. However the availability of sorghum in Africa is vital economic development, it is essential that the applied research focuses on the capacity in making this cereal the tool of food safety in Africa. Its small quantity in enzymes due to their insufficient development during malting often imposes the use of the commercial brewery enzymes as supplements to obtain the best wort characteristics for brewing [2-16]. Indeed, differences were reported on the composition and the brewery quality of the cultivars of malted sorghums [17-20]. This however could be allotted to the variety of sorghum used for malting. This report is also observed after mash filtration related to sorghum malt quality [15, 21]. The role of the industrial enzymes in facilitating the brewery processes is based on the fact that they have a great catalytic capacity, even when used in very small quantity (traces). Moreover, they catalyze and reduce the use of chemicals and energy during mashing. These observations, although they show differences in the behavior between the cultivars of sorghum during malting, one could foresee the possibilities of modeling and optimizing the mashing of sorghum. The process of mashing was the main research theme in the field of brewery. An improvement and a control of the manufacturing process of beer led first of all to modeling at the level of the basic stage which is malting. A particular interest was related to the β-glucanes which created enormous problems on the level of mash filtration. The modeling of the action of the β-glucanase on the degradation of the β-glucanes during germination [22] is an illustration. Thereafter, there was a simulation of the modeling of the activity of the enzymes resulting from germination during kilning [23]. Works concerned with the follow-up of the quantity of fermentable sugars by using a complex modeling have been done [24]. Modeling was equally the subject of the follow-up of the activity of the β-glucanase during mashing [25]. One can moreover note the use of modeling in the kinetics of the enzymatic hydrolysis of desobgo@yahoo.fr * Corresponding Author Email-id
the starch during mashing [26]. Another aspect of research was related to the simulation of the propagation of brewery yeasts [27] and the nonlinear modeling of industrial brewery fermentations [28]. The response surface methodology (RSM) was on the other hand used to study the effectiveness of the impact of the industrial enzymes on buckwheat malt for a brewery goal [29]. The models observed in the literature are complex and difficult to implement, and they almost exclusively relate to barley and not to sorghum. The beer of sorghum being known to be opaque makes it necessary to investigate on the turbidity of wort using response surface methodology.

II. MATERIAL AND METHODS

A. Enzymes

The characteristics of the commercial brewery enzymes used (Hitempase 2XL, a thermo stable α-amylase from *Bacillus licheniformis*; Bioglucanase TX, an enzymatic composition of β-glucanase and hemicellulases from *Trichoderma reesei*; and Brewers protease from *Bacillus amyloliquefaciens*) are showed in Table 1.

B. Sorghum cultivar

The biological material obtained at IRAD (Agricultural Research Institute for Development) center of Maroua (Cameroon) was *Madjeru* cultivar grains.

C. Modeling

Modeling was carried out as previously described [30]. A Doehlert matrix design with three factors (X1, X2, X3) representing Hitempase 2XL (X1), Bioglucanase TX (X2) and Brewers Protease (X3) at ranges of 0–3,000 U, 0–937.5 BGU and 0–100 mg, respectively, was used. The transformed matrix of coded variables to an experimental matrix and desired responses (extract and free amino nitrogen) are shown in Table 2. The coefficients of the models were obtained using the Systat version 12 software (Systat Software, Inc., San Jose, USA). This software also gives a statistical analysis on the model. Lastly, the curves were plotted using SigmaPlot version 11 build 11.0.0.77 software (WPCubed, GmbH, Germany).

D. Validation of Models

The models were validated using two procedures. The first consisted of coupling the method earlier described [30] to the absolute average deviation (AAD) method [31]. The second procedure consisted of applying the method described [32-34].

E. Malting

Malting was done using the method previously described [35]. About 1 kg of *Madjeru* sorghum cultivar grains were washed three times using 3 L of distilled water to remove dirt and other foreign bodies. The grains were steeped in 3 L of distilled water for 48 h at room temperature (\(\approx 25^\circ C\)) with three changes of water at intervals of 12 h before steep out. Germination was carried out for 4 days in a Heraeus type oven (D-63450 Hanau, Germany) at a temperature of 25°C with water sprinkled on the grains on daily basis. The malt was then air dried at 40°C for 4 days using a CKA 2000 AUF-type dryer (Ngaoundere, Cameroon). The malt was rubbed-off of its rootlets and stored until further use.

F. Mashing

Mashing was done using the method previously described [35]. Two hundred and fifty ml of distilled water were put into a 600 ml beaker and 50 g of sorghum (malted or unmalted) flour (Ø < 1 mm) added with continuous stirring until a homogenous mixture was obtained. This mixture was incubated at 45°C for 1 h in a water bath with intermittent stirring at intervals of 5 min. The mix was allowed to decant and 50 ml of the supernatant withdrawn and kept aside. The temperature of the mash was then raised to boiling so as to gelatinise sorghum starch during 40 min with intermittent stirring at intervals of 5 min before cooling to 65°C. The 50 ml of supernatant, to which commercial enzymes are added according to the Doehlert experimental design of three factors, were added to the mash and mashing continued for 1 h and 30 min with intermittent stirring at intervals of 10 min. The mash was cooled and filtered at 25°C for 1 h and 30 min using Whatmann paper no. 42.

G. Determination of turbidity

After mashing, filtration and cooling, the wort is placed inside the HACH 2100N turbidimeter (Hach company
headquarters, Loveland CO, USA). The turbidity value is obtained after stabilization of the value showed in NTU.

H. Optimization of Models

Models were optimized as previously described [30]. The optimal zone of intersection of the curves was highlighted.

III. RESULTS AND DISCUSSION

A. Modeling

Turbidity is a measurement which translates the quantity of suspended matter in wort. The follow-up of this data makes it possible to have an idea on the clearness of wort and thus of beer. Mathematical modeling of the action of the brewery enzymes during mashing would make it possible to understand the impact of each enzyme on this response.

The mathematical models obtained took account of the coded values of factors and arise as follows respectively for unmalted and malted *Madjeru*:

\[
Y_{MadjTU}(X_1, X_2, X_3) = 7.548 + 3.412X_1 - 2.389X_2 - 0.465X_1^2 + 0.774X_1X_2 + 1.567X_2X_3 - 2.036X_1^2 + 2.202X_2^2 - 4.449X_1X_2,
\]

(1)

\[
Y_{MadjMTU}(X_1, X_2, X_3) = 6.112 + 0.290X_1 + 0.730X_2 + 1.298X_1 + 0.765X_1X_2 - 2.407X_1X_3 + 0.133X_2X_3 + 2.164X_1^2 - 0.060X_2^2 - 2.350X_1X_2
\]

(2)

With: \(Y_{MadjTU}(X_1, X_2, X_3)\) representing the mathematical model for unmalted *Madjeru*; \(Y_{MadjMTU}(X_1, X_2, X_3)\) representing the mathematical model for malted *Madjeru*; \(X_1\), Hitempse 2XL; \(X_2\), Bioglucanase TX and \(X_3\) Brewers protease.

These mathematical models are polynomials having several variables with correlation coefficients \(R^2 = 0.966\) for unmalted *Madjeru* and \(R^2 = 0.912\) for malted *Madjeru*. These coefficients, coupled to AAD values of 0.093 and 0.050 for unmalted and malted *Madjeru*, respectively, allowed for the validation of the models for the wort turbidity. In addition, bias factors of 0.8 and 1.02, coupled to exactitude factors of 1.13 and 1.20 for both unmalted and malted *Madjeru*, respectively, also allowed for validation of the models according to the method described [32-34].

The factors of the models were linear or of first degree \((X_1, X_2\) and \(X_3)\), quadratic or of the second degree \((X_1^2, X_2^2\) and \(X_1X_2)\) and of interacting form \((X_1X_2, X_1X_3\) and \(X_2X_3)\). They were statistically considered significant or not if the probability \(P\) of increasing or decreasing turbidity was \(\leq 0.05\) or \(\geq 0.05\), respectively (Table 3).

TABLE II. MATRICES OF DOEHLERT, CODED AND EXPERIMENTAL VALUES

<table>
<thead>
<tr>
<th>Coded values</th>
<th>Experimental values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hit Bio Brew Prot</td>
<td>Hit (U) Bio (BGU) Brew Prot (mg) Unmalted Malted Turbidity</td>
</tr>
<tr>
<td>(X_1)</td>
<td>(X_2)</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.866</td>
</tr>
<tr>
<td>-0.500</td>
<td>-0.866</td>
</tr>
<tr>
<td>0.500</td>
<td>-0.866</td>
</tr>
<tr>
<td>-0.500</td>
<td>0.866</td>
</tr>
<tr>
<td>0.500</td>
<td>0.289</td>
</tr>
<tr>
<td>-0.500</td>
<td>-0.289</td>
</tr>
<tr>
<td>0.500</td>
<td>-0.289</td>
</tr>
<tr>
<td>0.000</td>
<td>0.577</td>
</tr>
<tr>
<td>-0.500</td>
<td>0.289</td>
</tr>
<tr>
<td>0.000</td>
<td>-0.577</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>-1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>-1.000</td>
<td>-0.866</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\(a\) Experimental result values.
\(b\) Theoretical values (values coming from mathematical models).

iJARS/ Vol. II/ Issue 2/Feb, 2013/305

http://www.ijars.in

ISSN 2278 – 9480
TABLE III. ESTIMATION OF REGRESSION COEFFICIENTS FOR THE TURBIDITY OF UNMalted AND MALTED Madjeru.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Coefficient</th>
<th>Std. deviation</th>
<th>t-statistics</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unmalted</td>
<td>Malted</td>
<td>Unmalted</td>
<td>Malted</td>
</tr>
<tr>
<td>CONSTANTE</td>
<td>7.548</td>
<td>6.112</td>
<td>0.436</td>
<td>0.285</td>
</tr>
<tr>
<td>X₁</td>
<td>3.412</td>
<td>0.290</td>
<td>0.448</td>
<td>0.293</td>
</tr>
<tr>
<td>X₂</td>
<td>-2.389</td>
<td>0.730</td>
<td>0.394</td>
<td>0.255</td>
</tr>
<tr>
<td>X₃</td>
<td>-0.465</td>
<td>1.298</td>
<td>0.369</td>
<td>0.241</td>
</tr>
<tr>
<td>X₁²</td>
<td>-2.036</td>
<td>2.164</td>
<td>0.769</td>
<td>0.502</td>
</tr>
<tr>
<td>X₂²</td>
<td>-2.392</td>
<td>-0.060</td>
<td>0.559</td>
<td>0.365</td>
</tr>
<tr>
<td>X₃²</td>
<td>-4.449</td>
<td>2.350</td>
<td>0.482</td>
<td>0.315</td>
</tr>
<tr>
<td>X₁X₂</td>
<td>-3.056</td>
<td>0.765</td>
<td>0.877</td>
<td>0.573</td>
</tr>
<tr>
<td>X₁X₃</td>
<td>1.567</td>
<td>0.133</td>
<td>0.772</td>
<td>0.504</td>
</tr>
<tr>
<td>X₂X₃</td>
<td>0.774</td>
<td>-2.407</td>
<td>0.914</td>
<td>0.597</td>
</tr>
</tbody>
</table>

Figure 1. (A) : Effect of Hitempase (α-Amylase) on the evolution of Madjeru worts turbidity (NTU). (B) : Effect of Hitempase (α-Amylase) on the evolution of Madjeru worts turbidity (NTU) in the presence of Bioglucanase TX (750 BGU) and Brewers Protease (60 mg).

Figure 2. (A) : Effect of Bioglucanase (β-Glucanase) on the evolution of Madjeru worts turbidity (NTU). (B) : Effect of Bioglucanase (β-Glucanase) on the evolution of Madjeru worts turbidity (NTU) in the presence of Hitempase 2XL (1875 U) and Brewers Protease (60 mg).
Figure 1A represents the influence of Hitempase 2XL on the turbidity of unmalted and malted Madjeru worts. In the absence of this enzyme, turbidity was 0.59 NTU and 3.47 NTU respectively for unmalted and malted Madjeru. In the case of unmalted Madjeru, after addition of Hitempase 2XL, one observes an increase in turbidity up to a maximum value of 14.91 NTU corresponding to 3000 U. In the case of malted Madjeru, there was a drop of turbidity up to a minimal value of 6.62 NTU at 1397.90 U; then, it increases up to 9.09 NTU at 3000 U. Additions of 1261.90 U and 1958.40 U of Hitempase 2XL leads to worts having same the turbidity both for unmalted and malted Madjeru, at 6.67 NTU and 6.92 NTU respectively.

Figure 1B represents the influence of Hitempase 2XL on the turbidity of unmalted and malted Madjeru worts, in the presence of Bioglucanase TX (750 BGU) and Brewers Protease (60 mg). In absence of Hitempase 2XL, the initial turbidity was 3.89 NTU and 8.50 NTU respectively for unmalted and malted Madjeru. In the case of unmalted Madjeru, after addition of Hitempase 2XL, one observes an increase in turbidity up to a maximum value of 6.94 NTU at 1835.70 U. A reduction thereafter is observed and, one reaches a minimal value of 5.71 NTU at 3000 U. In the case of malted Madjeru, turbidity drops up to the minimal value of 6.62 NTU at 1397.90 U; then, it increases up to 9.09 NTU at 3000 U. Additions of 1261.90 U and 1958.40 U of Hitempase 2XL leads to worts having same the turbidity both for unmalted and malted Madjeru, at 6.67 NTU and 6.92 NTU respectively.

The results show that the effect of Hitempase 2XL on wort turbidity would be more important for unmalted Madjeru than for malted Madjeru. This would be explained by the fact this enzyme alone (case of unmalted Madjeru), would be less effective in the solubilization of the major compound of the grain. It is especially the starch which would be solubilized by Hitempase 2XL and in addition, not only into simple sugars but also into oligosaccharides and dextrans (colloidal materials). Dextrins and significant amounts of proteins and other sugars such as the β-glucanes remain insoluble. However, during malting, (case of malted Madjeru) the grain is subjected to the action of a naturally balanced and variable quantity of hydrolytic enzymes which were synthetized in order to ensure
partial solubilization of the macromolecules of any nature [36, 37]. These enzymes continue to solubilize the molecules during mashing, decreasing therefore the turbidity of worts. It is nevertheless important to note that under the conditions described for Figure 1A, an increase of Hitempase 2XL in excess (∝ 948.40 U), led to an increase in turbidity. The low turbidity observed in the absence or the presence of Hitempase 2XL (fig. 1A) at weak concentrations (∝ 331.24 U) could be explained by the inefficiency of the enzyme at this concentration to release sufficient quantities of colloidal material by hydrolyzing starch (oligosaccharides and dextrans).

Increase in turbidity of wort up to 1835.70 U (Fig. 1B) in the case of unmalted Madjeru showed that at the beginning, the action of the enzyme led much more to the formation of the colloidal material (oligosaccharides and dextrans) than soluble material (monosaccharide). Beyond this concentration, the drop in turbidity would explain subsequent solubilization in particular oligosaccharides by the enzyme. The quantities of natural enzymes developed during malting, in addition to the quantities of added brewery enzymes, are sufficient to continue the solubilization of the macromolecules up to a Hitempase 2XL concentration of 1397.90 U. Any additional quantity (Hitempase 2XL) beyond this could increase the turbidity of worts.

According to the mathematical models, in its linear form (X1), the impact of Hitempase 2XL on turbidity is significant (P = 0.000; Table 3) for unmalted Madjeru wort, and non-significant (P = 0.354) for malted Madjeru wort (Table 3). This action contributes to 15% and 3% for unmalted and malted Madjeru worts respectively (Fig. 4A and Fig. 4B). In its quadratic form (X1^2), the action of Hitempase 2XL is statistically significant for the two types of wort (P = 0.033 and P = 0.004 respectively; Table 3). Its contribution to turbidity in this quadratic form (X1^2) is indeed 9% and 21% for unmalted and malted Madjeru worts respectively (Fig. 4A and Fig. 4B).

Figure 2A represents the influence of Bioglucanase TX on the turbidity of unmalted and malted Madjeru worts. In the absence of this enzyme, the initial turbidity was 0.59 NTU and 3.47 NTU respectively. In the case of unmalted Madjeru, after addition of Bioglucanase TX, one observed a reduction of wort turbidity up to a value of 0.00 NTU at 201.47 BU. After that, the curve increased to reach 3 NTU at 937.50 BU. In the case of malted Madjeru, turbidity decreased slightly to reach 3.22 NTU at 937.5 BU.

Figure 2B represents the influence of Bioglucanase TX on the turbidity of unmalted and malted Madjeru worts in the presence of Hitempase 2XL (1875 U) and Brewers Protease (60 mg). In the absence of this enzyme, initial turbidity was 12.70 NTU and 5.50 NTU respectively for unmalted and malted Madjeru worts. In the case of unmalted Madjeru, after addition of Bioglucanase TX, one observes a reduction of wort turbidity up to the minimal value of 6.82 NTU at 937.5 BU. In the case of malted Madjeru, turbidity increases up to 7.14 NTU at 937.5 BU. Another observation shows that an addition of 777.52 BU of Bioglucanase TX led to the same turbidity of 6.88 NTU both for unmalted Madjeru and malted Madjeru.

A reduction in turbidity, followed an increase in the case of unmalted Madjeru worts, translated the fact that until the quantities in Bioglucanase TX of 201.47 BU, this enzyme managed to solubilize β-glucanes responsible for the turbidity of worts. Beyond this concentration (as for Hitempase 2XL), an additional enzyme in the mash would constitute additional source of colloidal particles and thus increase in the turbidity of worts. In fact Bioglucanase TX hydrolyzed the β (1→3; 1→4) – glucanes link by the non-reducing ends in units of glucose, disaccharide, cellobiose and laminaribiose [37] which, would be solubilized thereafter [25]. In the case of malted Madjeru, the turbidity was quasi constant with increase in enzyme concentration (a light reduction of 0.23 NTU is approximately of 6%). These results showed that the effect of Bioglucanase TX on the modification of the wort turbidity profile during mashing was not important compared to that of Hitempase 2XL.

The results in the case of malted Madjeru show that malting mobilizes sufficient enzymes to weaken the grain and make these macromolecules more soluble so that there is no need for additional Bioglucanase TX during mashing. A contribution moreover in this enzyme did nothing but increased turbidity. On the other hand, the requirement in this enzyme during mashing of unmalted Madjeru is important to reduce turbidity.

The mathematical models showed, in its linear form (X1) that, the impact of Bioglucanase TX on turbidity is significant both for unmalted Madjeru wort (P = 0.001; Table 3) and malted Madjeru wort (P = 0.042; Table 3). The increase in turbidity would be allotted to the enzymes synthesized during malting. This action contributes to 11% and 7% for unmalted and malted Madjeru respectively (Fig. 4A and Fig. 4B). In its quadratic form (X1^2), the action of Bioglucanase TX (Table 3) is statistically significant for unmalted Madjeru (P = 0.021), and non-significant for malted Madjeru (P = 0.906). Its contribution to turbidity in this quadratic form (X1^2) is indeed of 10% and 1% for unmalted and malted Madjeru respectively (Fig. 4A and Fig. 4B).

Figure 3A represents the influence of Brewers Protease on the turbidity of unmalted and malted Madjeru worts. In the absence of this enzyme, initial turbidity was 0.59 NTU and 3.47 NTU respectively. In the case of unmalted Madjeru, after addition of Brewers Protease, one observes an increase in turbidity up to 1.82 NTU at 32.12 mg. Thereafter turbidity decreased to reach 0.00 NTU at 71.31 mg. The case of malted Madjeru led to an increase in turbidity after addition of Brewers Protease, up to a maximum value of 9.34 NTU at 96.80 mg. On the other hand, at 100 mg of added enzyme, one has a turbidity of 9.33 NTU.

Figure 3B represents the influence of Brewers Protease on the turbidity of unmalted and malted Madjeru worts in the presence of Hitempase 2XL (1875 U) and Bioglucanase TX (750 BU). In the absence of this enzyme, turbidity was 3.56 NTU and 4.59 NTU respectively for unmalted and malted Madjeru worts. After addition of Brewers Protease, one noted an increase in turbidity for both unmalted Madjeru worts and malted Madjeru worts up to respective maximum values of 6.98 NTU and 6.84 NTU at 53.73 mg and 59.98 mg.
respectively. Thereafter turbidity decreased respectively to reach 4.44 NTU and 5.84 NTU at 100 mg. By adding 28.14 mg and 65.34 mg of Brewers Protease in the mash, one obtained both for unmalted and malted Madjeru, respective turbidity of 6.21 NTU and 6.82 NTU.

In the case of unmalted Madjeru, low turbidity could be explained by the colloidal matter residues which passed through the filter paper. On the Figure 3B, obtaining more important turbidity in absence of Brewers Protease, could be explained by the incomplete hydrolysis of the mash by α-amylase and protease. The action of protease on the mash of unmalted cereal was initially, the release of the starch granules while proceeding by a solubilization of protein film surrounding them. The first products are some amino-acids and especially peptides. The latter initially will increase turbidity before undergoing thereafter a solubilization under the action of Brewers Protease.

In the case of malted Madjeru, considering that the components of cereal already underwent a partial solubilization during malting [36-39], one had from the start higher turbidity. Additional protease only could not increase the turbidity of worts resulting from mashing.

The mathematical models showed that, in its linear form (X₁), the impact of Brewers Protease on wort turbidity was non-significant for unmalted Madjeru (P = 0.338; Table 3), but significant for malted Madjeru wort (P = 0.003; Table 3). The increase in turbidity would be allotted to the multitude of enzymes synthesized during malting. This action contributes to 2% and 13% for unmalted and malted Madjeru respectively (Fig. 4A and Fig. 4B). In its quadratic form (X₁²), the action of Brewers Protease (Table 3) was statistically significant both for unmalted Madjeru (P = 0.000) and malted Madjeru (P = 0.002). Its contribution to turbidity in this quadratic form (X₁²) was indeed of 20% and 23% for unmalted and malted Madjeru respectively (Fig. 4A and Fig. 4B).

The statistical analyzed (Table 4) present the impacts of interactions (X₁X₂, X₁X₃ and X₂X₃) between these enzymes on the turbidity of worts. The contributions were presented in the Figures 4A and 4B. They was globally statistically significant for unmalted Madjeru (P = 0.007), but not for malted Madjeru (P = 0.069).

Interaction X₁X₂ (Hitempase 2XL/Bioglucanase TX) had a significant impact on unmalted Madjeru wort but not significant for that of malted Madjeru wort (P = 0.002 and 0.285 respectively; Table 3). It contributed to a total value of 23% for wort turbidity of unmalted Madjeru and to a total value of 7% for wort turbidity of malted Madjeru (Fig. 4A and Fig. 4B).

Interaction X₁X₃ (Hitempase 2XL/Brewers Protease) was not significant on the turbidity of unmalted Madjeru worts (P = 0.512; Table 3), but was significant on the turbidity of malted Madjeru worts (P = 0.013; Table 3). It contribution was of 3% and 24% respectively (Fig. 4A and Fig. 4B).

Interaction X₂X₃, corresponding to the couple Bioglucanase TX/Brewers Protease did not had significant impact on the turbidity both for unmalted Madjeru worts (P = 0.195) and malted Madjeru worts (P = 0.858; Table 3). It contribution was of 7% and 1% respectively (Fig. 4A and Fig. 4B).

A comparison made in Table 4 between turbidity of unmalted and malted Madjeru worts, showed that there is no significant difference (P = 0.232).

B. Optimization

The mathematical models obtained for the follow-up of unmalted and malted worts turbidity are represented by equations 5.1 and 5.2.

An optimization of these equations permitted to minimize unmalted and malted worts turbidity. These minimal characteristics are shown in Table 5. One could for unmalted and malted Madjeru, obtain turbidity close to 0.00 NTU and 5.27 NTU respectively.

To obtain wort whose turbidity was lower than 15 NTU both for unmalted Madjeru and malted Madjeru, it was consequently necessary to superimpose the contour plots. By maintaining the contribution in Bioglucanase at 0 BGU (-0.866), the expressions of equations 5.1 and 5.2 became:

\[
Y_{\text{MadTU}} (X_1, X_3) = 11,268 + 7,790X_1 - 1,822X_3 + 0,774X_1X_3 - 2,036X_1^2 - 4,449X_3^2
\]

(6.1)

\[
Y_{\text{MadMTU}} (X_1, X_3) = 5,434 - 0,372X_1 + 1,182X_3 - 2,407X_1X_3 + 2,164X_1^2 - 2,35X_3^2
\]

(6.2)

The layout of the contour plots after transformation of the coded values into real values permitted to obtain wort of turbidity lower than 15 NTU (Fig. 5).

<table>
<thead>
<tr>
<th>Source</th>
<th>Ddl</th>
<th>Sum square</th>
<th>Mean square</th>
<th>F</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-groups</td>
<td>1</td>
<td>9.462</td>
<td>9.462</td>
<td>1.48</td>
<td>0.232</td>
</tr>
<tr>
<td>Intra-groups</td>
<td>32</td>
<td>204.164</td>
<td>6.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>213.627</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE V.
OPTIMAL CONCENTRATION OF ENZYMES FOR MINIMAL CHARACTERISTICS OF UNMALTED AND MALTED MADJERU WORT.

<table>
<thead>
<tr>
<th>Sorghum</th>
<th>Factors</th>
<th>Optimal Combinations</th>
<th>Response</th>
<th>Turbidity (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coded values</td>
<td>Real values</td>
<td></td>
</tr>
<tr>
<td>Unmalted</td>
<td>Hitempase 2XL</td>
<td>-1</td>
<td>0 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioglucanase TX</td>
<td>-0.315</td>
<td>298.25 BGU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brewers Protease</td>
<td>-0.816</td>
<td>0 mg</td>
<td></td>
</tr>
<tr>
<td>Malted</td>
<td>Hitempase 2XL</td>
<td>-0.075</td>
<td>1387.50 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioglucanase TX</td>
<td>-0.866</td>
<td>0 BGU</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>Brewers Protease</td>
<td>-0.290</td>
<td>32.23 mg</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.
Aire de combinaisons enzymatiques induisant une turbidité (NTU) optimale des moûts du cultivar Madjeru.

IV. CONCLUSION

The effects of three commercial mashing enzymes (Hitempase 2XL, Bioglucanase TX and Brewers protease) on the turbidity were studied during the mashing of unmalted and malted Madjeru. Hitempase 2XL was the principal enzyme responsible for the increase of unmalted Madjeru wort turbidity. Optimization of mashing properties through models clearly describing the actions of individual commercial mashing enzymes, as displayed in this study using the response surface methodology, is however of interest, particularly when mashing with high amounts of sorghum adjuncts. Further studies of wort obtained after such studies should be the control of that turbidity after fermentation.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Department of Process Engineering, National School of Agro-Industrial Sciences (ENSAI) of the University of Ngaoundere (Cameroon) for providing necessary facilities for the successful completion of this research work.

REFERENCES

